General Purpose Transistors

NPN Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 which is designed for low power surface mount applications.

Features

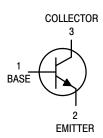
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
	BC846 BC847 BC848	V _{CEO}	65 45 30	V
	BC846 BC847 BC848	V _{CBO}	80 50 30	>
	BC846 BC847 BC848	V _{EBO}	6.0 6.0 5.0	V
Collector Current – Continuo	us	Ic	100	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C	P _D	200	mW
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	620	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

www.onsemi.com

SC-70/SOT-323 CASE 419 STYLE 3

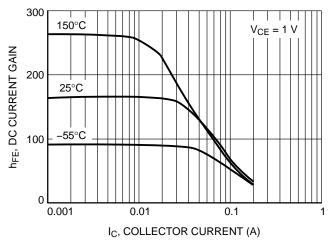
MARKING DIAGRAM

XX = Specific Device Code

M = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 12 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C = 10 mA)	BC846 Series BC847 Series BC848 Series	V _{(BR)CEO}	65 45 30	- - -	- - -	V
Collector – Emitter Breakdown Voltage ($I_C = 10 \mu A, V_{EB} = 0$)	BC846 Series BC847 Series BC848 Series	V _(BR) CES	80 50 30	- - -	- - -	V
Collector – Base Breakdown Voltage $(I_C = 10 \mu A)$	BC846 Series BC847 Series BC848 Series	V _{(BR)CBO}	80 50 30	- - -	- - -	V
Emitter – Base Breakdown Voltage ($I_E = 1.0 \mu A$)	BC846 Series BC847 Series BC848 Series	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current (V _{CB} = 30 V)	(V _{CB} = 30 V, T _A = 150°C)	I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS						
DC Current Gain ($I_C = 10 \mu A$, $V_{CE} = 5.0 V$)	BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C	h _{FE}	- - -	90 150 270	- - -	-
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C		110 200 420	180 290 520	220 450 800	
Collector – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)			- -	- -	0.25 0.6	V
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA (I_C = 100 mA, I_B = 5.0 m/s		V _{BE(sat)}	- -	0.7 0.9	- -	V
Base-Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V)		V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain - Bandwidth Product (I _C = 10 mA, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	100	-	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)		C _{obo}	-	-	4.5	pF
Noise Figure (I _C = 0.2 mA, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)			_	_	10	dB

BC846A, BC847A, BC848A

300 150°C 200 25°C 25°C 0 0.001 0.001 1c, COLLECTOR CURRENT (A)

Figure 1. DC Current Gain vs. Collector Current

Figure 2. DC Current Gain vs. Collector Current

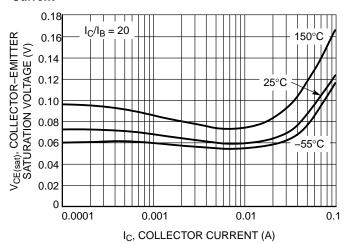
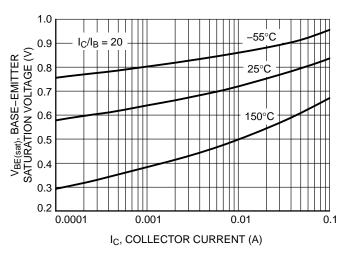



Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

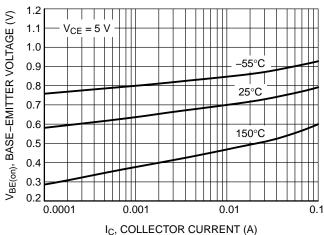
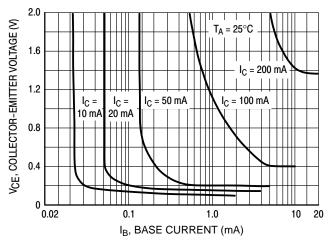



Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

Figure 5. Base Emitter Voltage vs. Collector Current

BC846A, BC847A, BC848A

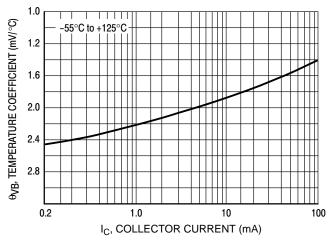


Figure 6. Collector Saturation Region

Figure 7. Base-Emitter Temperature Coefficient

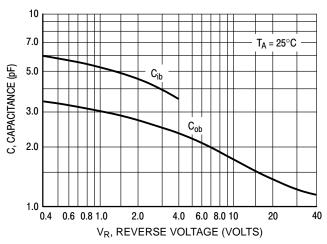


Figure 8. Capacitances

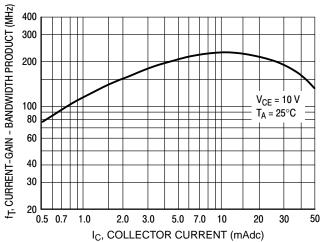


Figure 9. Current-Gain - Bandwidth Product

BC846B

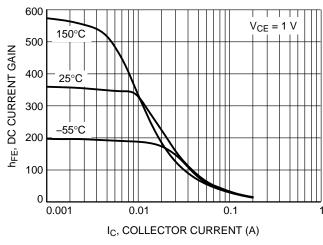


Figure 10. DC Current Gain vs. Collector Current

Figure 11. DC Current Gain vs. Collector Current

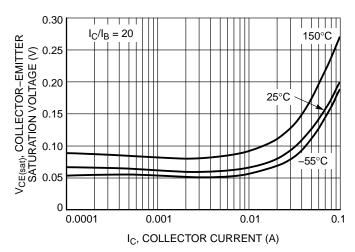


Figure 12. Collector Emitter Saturation Voltage vs. Collector Current

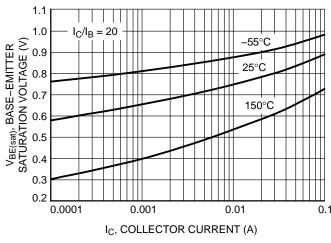


Figure 13. Base Emitter Saturation Voltage vs. Collector Current

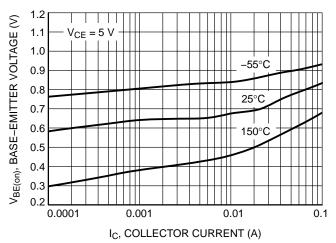
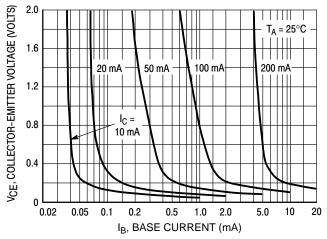



Figure 14. Base Emitter Voltage vs. Collector Current

BC846B

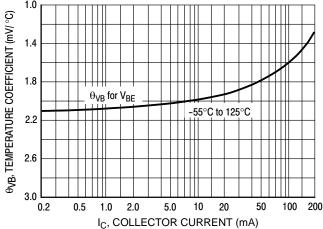


Figure 15. Collector Saturation Region

Figure 16. Base-Emitter Temperature Coefficient

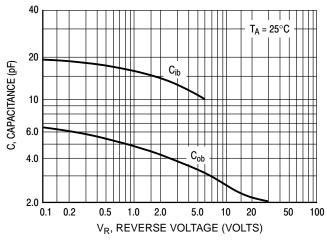


Figure 17. Capacitance

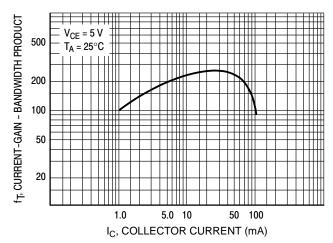
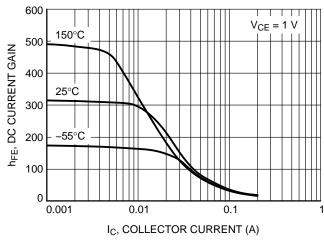



Figure 18. Current-Gain - Bandwidth Product

BC847B, BC848B

600 150°C 150°C 400 25°C 25°C 100 0 0.001 0.01 0.1

Figure 19. DC Current Gain vs. Collector Current

Figure 20. DC Current Gain vs. Collector Current

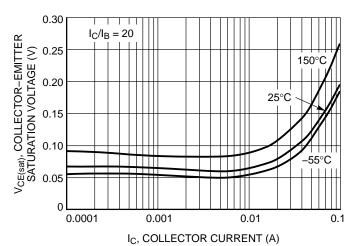


Figure 21. Collector Emitter Saturation Voltage vs. Collector Current

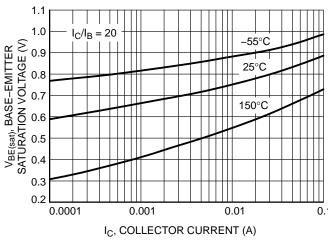


Figure 22. Base Emitter Saturation Voltage vs. Collector Current

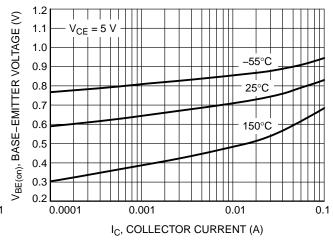
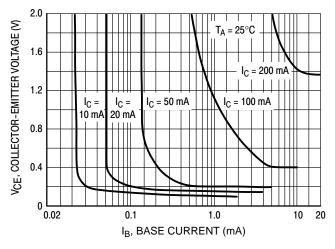



Figure 23. Base Emitter Voltage vs. Collector Current

BC847B, BC848B

1.2 -55°C to +125°C - -55°C to

Figure 24. Collector Saturation Region

Figure 25. Base–Emitter Temperature Coefficient

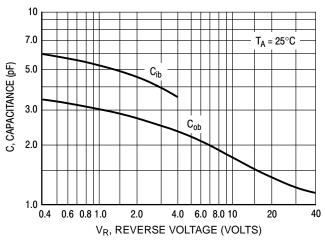


Figure 26. Capacitances

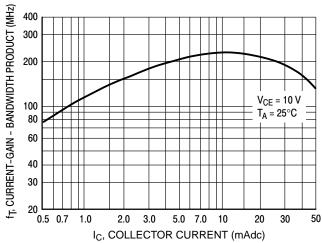
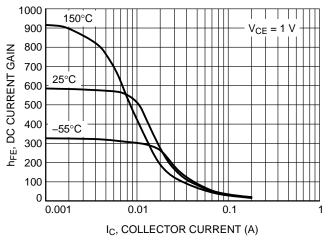



Figure 27. Current-Gain - Bandwidth Product

BC847C, BC848C

1000 900 150°C 800 hFE, DC CURRENT GAIN 700 600 25°C 500 400 –55°C 300 200 100 0.001 0.01 0.1 I_C, COLLECTOR CURRENT (A)

Figure 28. DC Current Gain vs. Collector Current

Figure 29. DC Current Gain vs. Collector Current

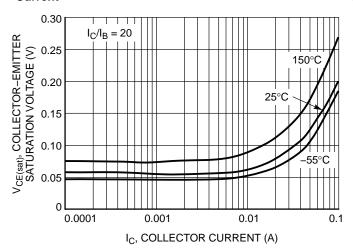


Figure 30. Collector Emitter Saturation Voltage vs. Collector Current

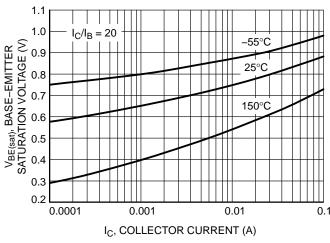


Figure 31. Base Emitter Saturation Voltage vs. Collector Current

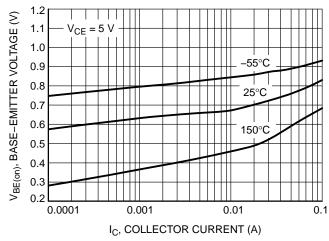
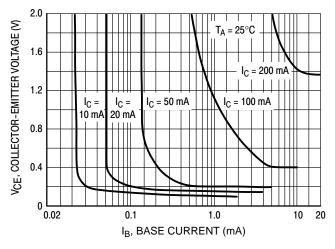



Figure 32. Base Emitter Voltage vs. Collector Current

BC847C, BC848C

1.2 -55°C to +125°C - 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

Figure 33. Collector Saturation Region

Figure 34. Base–Emitter Temperature Coefficient

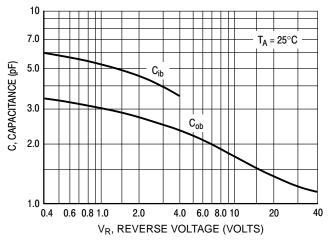


Figure 35. Capacitances

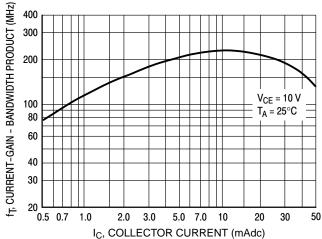


Figure 36. Current-Gain - Bandwidth Product

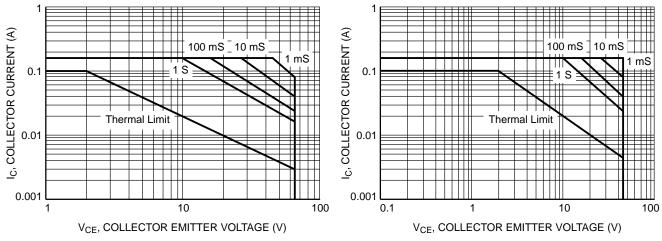


Figure 37. Safe Operating Area for BC846A, BC846B

Figure 38. Safe Operating Area for BC847A, BC847B, BC847C

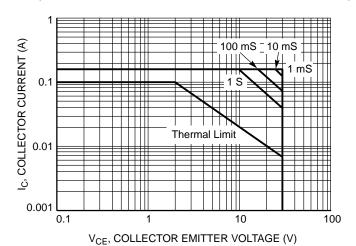


Figure 39. Safe Operating Area for BC848A, BC848B, BC848C

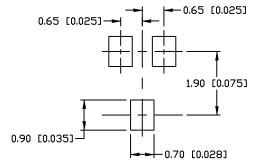
DEVICE ORDERING AND SPECIFIC MARKING INFORMATION

Device	Specific Marking Code	Package	Shipping [†]	
BC846BWT1G	1B		3,000 / Tape & Reel	
SBC846BWT1G*	IB			
BC847AWT1G	1E		0.000/T 0.D 1	
SBC847AWT1G*	16	SC-70 (SOT-323) (Pb-Free)	3,000 / Tape & Reel	
BC847BWT1G	1F		3,000 / Tape & Reel	
SBC847BWT1G*	IF			
BC847CWT1G	1G		2 000 / Tana & Baal	
SBC847CWT1G*	16		3,000 / Tape & Reel	
BC847CWT3G	1G		10,000 / Tape & Reel	
SBC847CWT3G*	16			
BC848BWT1G	1K		3,000 / Tape & Reel	
NSVBC848BWT1G*	- IK			
BC848CWT1G	1L	1		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

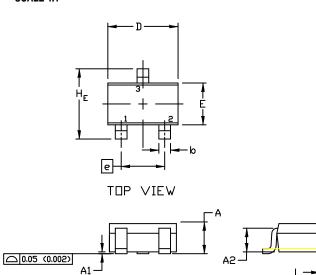
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

SC-70 (SOT-323) CASE 419 ISSUE P


END VIEW

DATE 07 OCT 2021

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS				INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF		0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095
e e1 L	1.20	1.30 0.65 BSC 0.38	1.40 0.56	0.047 0.051 0 0.026 BSC 0.008 0.015 0		0.05 C 0.06

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM

SIDE VIEW

XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
3. COLLECTOR	3. COLLECTOR	3. DRAIN	3. CATHODE-ANODE	3. ANODE-CATHODE	3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

BC846AWT1 BC846AWT1G BC846BWT1 BC846BWT1G BC847AWT1 BC847AWT1G BC847BWT1

BC847BWT1G BC847CWT1 BC847CWT1G BC848BWT1 BC848BWT1G BC848CWT1 BC848CWT1G

SBC847BWT1G SBC846BWT1G SBC847AWT1G SBC847CWT1G BC847CWT3G SBC847CWT3G

NSVBC848BWT1G